CLEX Phi 2 32K by DAMO-NLP-SG

 ยป  All LLMs  ยป  DAMO-NLP-SG  ยป  CLEX Phi 2 32K   URL Share it on

  Arxiv:2310.16450   Autotrain compatible   Custom code Dataset:damo-nlp-sg/longcorpus...   En   Endpoints compatible   Phi   Region:us   Safetensors   Sharded   Tensorflow

CLEX Phi 2 32K Benchmarks

nn.n% — How the model compares to the reference models: Anthropic Sonnet 3.5 ("so35"), GPT-4o ("gpt4o") or GPT-4 ("gpt4").
CLEX Phi 2 32K (DAMO-NLP-SG/CLEX-Phi-2-32K)
๐ŸŒŸ Advertise your project ๐Ÿš€

CLEX Phi 2 32K Parameters and Internals

Model Type 
base
Additional Notes 
Simple and clear model with minimal architecture changes.
Supported Languages 
en (unknown)
Training Details 
Data Sources:
DAMO-NLP-SG/LongCorpus-2.5B
Methodology:
Continuous Length Extrapolation
Context Length:
32768
Model Architecture:
Minimal changes with a single up-and-down projection layer.
LLM NameCLEX Phi 2 32K
Repository ๐Ÿค—https://huggingface.co/DAMO-NLP-SG/CLEX-Phi-2-32K 
Model Size2.5b
Required VRAM5.6 GB
Updated2025-09-18
MaintainerDAMO-NLP-SG
Model Typephi
Model Files  5.0 GB: 1-of-2   0.6 GB: 2-of-2
Supported Languagesen
Model ArchitecturePhiForCausalLM
Licensemit
Context Length2048
Model Max Length2048
Transformers Version4.36.2
Tokenizer ClassCodeGenTokenizer
Padding Token<|endoftext|>
Vocabulary Size51200
Torch Data Typebfloat16
Errorsreplace

Rank the CLEX Phi 2 32K Capabilities

๐Ÿ†˜ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐ŸŒŸ

Instruction Following and Task Automation  
Factuality and Completeness of Knowledge  
Censorship and Alignment  
Data Analysis and Insight Generation  
Text Generation  
Text Summarization and Feature Extraction  
Code Generation  
Multi-Language Support and Translation  

What open-source LLMs or SLMs are you in search of? 51415 in total.

Our Social Media →  
Original data from HuggingFace, OpenCompass and various public git repos.
Release v20241124