Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128 by ChenMnZ

 ยป  All LLMs  ยป  ChenMnZ  ยป  Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128   URL Share it on

  Arxiv:2308.13137   Autotrain compatible   Conversational   Endpoints compatible   Instruct   Mixtral   Moe   Region:us   Safetensors   Sharded   Tensorflow

Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128 Benchmarks

nn.n% — How the model compares to the reference models: Anthropic Sonnet 3.5 ("so35"), GPT-4o ("gpt4o") or GPT-4 ("gpt4").
๐ŸŒŸ Advertise your project ๐Ÿš€

Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128 Parameters and Internals

Additional Notes 
For detailed usage, refer to the corresponding Jupyter notebook available in the repository.
LLM NameMixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128
Repository ๐Ÿค—https://huggingface.co/ChenMnZ/Mixtral-8x7B-Instruct-v0.1-OmniQuantv1-w4a16g128 
Model Size6.5b
Required VRAM24.7 GB
Updated2025-06-09
MaintainerChenMnZ
Model Typemixtral
Instruction-BasedYes
Model Files  5.0 GB: 1-of-5   5.0 GB: 2-of-5   5.0 GB: 3-of-5   5.0 GB: 4-of-5   4.7 GB: 5-of-5
Model ArchitectureMixtralForCausalLM
Context Length32768
Model Max Length32768
Transformers Version4.36.0
Tokenizer ClassLlamaTokenizer
Vocabulary Size32000
Torch Data Typefloat16
Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128 (ChenMnZ/Mixtral-8x7B-Instruct-v0.1-OmniQuantv1-w4a16g128)

Best Alternatives to Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128

Best Alternatives
Context / RAM
Downloads
Likes
Mixtral Instruct MLFlowV432K / 24.7 GB471
...nstruct V0.1 AQLM 2Bit 1x16 Hf32K / 13.1 GB3618
Mixtral 8x7B Instruct V0.1 AWQ32K / 24.7 GB7711157
Mixtral 8x7B Instruct V0.1 AWQ32K / 24.7 GB190
Dolphin 2.7 Mixtral 8x7b AWQ32K / 24.7 GB302823
Mixtral Instruct AWQ32K / 24.7 GB270743
...xtral Instruct AWQ Clone Dec2332K / 24.7 GB490
...ixtral Instruct 8x7b Zloss AWQ32K / 24.7 GB212
...0.1 LimaRP ZLoss DARE TIES AWQ32K / 24.7 GB253
...Instruct V0.1 LimaRP ZLoss AWQ32K / 24.7 GB221
Note: green Score (e.g. "73.2") means that the model is better than ChenMnZ/Mixtral-8x7B-Instruct-v0.1-OmniQuantv1-w4a16g128.

Rank the Mixtral 8x7B Instruct V0.1 OmniQuantv1 W4a16g128 Capabilities

๐Ÿ†˜ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐ŸŒŸ

Instruction Following and Task Automation  
Factuality and Completeness of Knowledge  
Censorship and Alignment  
Data Analysis and Insight Generation  
Text Generation  
Text Summarization and Feature Extraction  
Code Generation  
Multi-Language Support and Translation  

What open-source LLMs or SLMs are you in search of? 48046 in total.

Our Social Media →  
Original data from HuggingFace, OpenCompass and various public git repos.
Release v20241124