Qwen2.5 7B HR Test by Nitral-AI

 ยป  All LLMs  ยป  Nitral-AI  ยป  Qwen2.5 7B HR Test   URL Share it on

  Merged Model   Autotrain compatible Base model:nitral-ai/qwen2.5-7... Base model:nitrals-loras/hr-ot... Base model:xiaojian9992024/qwe...   Conversational   Endpoints compatible   Lora   Qwen2   Region:us   Safetensors   Sharded   Tensorflow

Qwen2.5 7B HR Test Benchmarks

nn.n% — How the model compares to the reference models: Anthropic Sonnet 3.5 ("so35"), GPT-4o ("gpt4o") or GPT-4 ("gpt4").
Qwen2.5 7B HR Test (Nitral-Archive/Qwen2.5-7B_HR-Test)
๐ŸŒŸ Advertise your project ๐Ÿš€

Qwen2.5 7B HR Test Parameters and Internals

LLM NameQwen2.5 7B HR Test
Repository ๐Ÿค—https://huggingface.co/Nitral-Archive/Qwen2.5-7B_HR-Test 
Base Model(s)  Xiaojian9992024/Qwen2.5-Dyanka-7B-Preview   Nitral-AI/Qwen2.5-7B-Rebase   Nitral-AI/hr-other-7B-lora   Xiaojian9992024/Qwen2.5-Dyanka-7B-Preview   Nitral-AI/Qwen2.5-7B-Rebase   Nitral-AI/hr-other-7B-lora
Merged ModelYes
Model Size7b
Required VRAM15.2 GB
Updated2025-03-24
MaintainerNitral-AI
Model Typeqwen2
Model Files  5.0 GB: 1-of-4   4.9 GB: 2-of-4   5.0 GB: 3-of-4   0.3 GB: 4-of-4
Model ArchitectureQwen2ForCausalLM
Context Length1010000
Model Max Length1010000
Transformers Version4.49.0
Tokenizer ClassQwen2Tokenizer
Padding Token<|endoftext|>
Vocabulary Size152064
LoRA ModelYes
Torch Data Typebfloat16
Errorsreplace

Best Alternatives to Qwen2.5 7B HR Test

Best Alternatives
Context / RAM
Downloads
Likes
Qwen2.5 7B Instruct 1M986K / 15.4 GB1184798347
Hush Qwen2.5 7B V1.2986K / 15.2 GB71
Hush Qwen2.5 7B V1.1986K / 15.2 GB71
Hush Qwen2.5 7B V1.4986K / 15.2 GB71
Hush Qwen2.5 7B Preview986K / 15.2 GB60
Hush Qwen2.5 7B V1.3986K / 15.2 GB72
Qwen2.5 7B Preview986K / 15.2 GB70
Hush Qwen2.5 7B RP V1.4 1M986K / 15.2 GB72
Qwen 2.5 7B Exp Sce986K / 15.2 GB72
Qwen2.5 7B MixStock V0.1986K / 15.2 GB73
Note: green Score (e.g. "73.2") means that the model is better than Nitral-Archive/Qwen2.5-7B_HR-Test.

Rank the Qwen2.5 7B HR Test Capabilities

๐Ÿ†˜ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐ŸŒŸ

Instruction Following and Task Automation  
Factuality and Completeness of Knowledge  
Censorship and Alignment  
Data Analysis and Insight Generation  
Text Generation  
Text Summarization and Feature Extraction  
Code Generation  
Multi-Language Support and Translation  

What open-source LLMs or SLMs are you in search of? 50924 in total.

Our Social Media →  
Original data from HuggingFace, OpenCompass and various public git repos.
Release v20241124