| Model Type |
| |||||||||
| Use Cases |
| |||||||||
| Additional Notes |
| |||||||||
| Supported Languages |
| |||||||||
| Training Details |
| |||||||||
| Responsible Ai Considerations |
| |||||||||
| Input Output |
|
| LLM Name | QwQ 32B Preview |
| Repository ๐ค | https://huggingface.co/Qwen/QwQ-32B-Preview |
| Base Model(s) | |
| Model Size | 32b |
| Required VRAM | 65.5 GB |
| Updated | 2025-09-23 |
| Maintainer | Qwen |
| Model Type | qwen2 |
| Instruction-Based | Yes |
| Model Files | |
| Supported Languages | en |
| Model Architecture | Qwen2ForCausalLM |
| License | apache-2.0 |
| Context Length | 32768 |
| Model Max Length | 32768 |
| Transformers Version | 4.43.1 |
| Tokenizer Class | Qwen2Tokenizer |
| Padding Token | <|endoftext|> |
| Vocabulary Size | 152064 |
| Torch Data Type | bfloat16 |
| Errors | replace |
Model |
Likes |
Downloads |
VRAM |
|---|---|---|---|
| PathfinderAI | 0 | 17 | 65 GB |
| ...eview Gptqmodel 4bit Vortex V2 | 16 | 6 | 15 GB |
| QwQ 32B Preview 6bit | 4 | 11 | 26 GB |
| QwQ 32B Preview AWQ | 26 | 33539 | 19 GB |
| QwQ 32B Preview GPTQ 4bit | 3 | 306 | 16 GB |
| ...eview Gptqmodel 4bit Vortex V1 | 51 | 1 | 16 GB |
| ...Q 32B Preview Unsloth Bnb 4bit | 19 | 7 | 23 GB |
| QwQ 32B Preview Bnb 4bit | 4 | 81 | 19 GB |
| QwQ 32B Preview 4bit | 3 | 30 | 18 GB |
| Qwen QwQ 32B Preview MLX 8bit | 4 | 18 | 34 GB |
Best Alternatives |
Context / RAM |
Downloads |
Likes |
|---|---|---|---|
| ...y Qwen2.5coder 32B V24.1q 200K | 195K / 65.8 GB | 7 | 2 |
| ...wen2.5 32B Inst BaseMerge TIES | 128K / 65.8 GB | 78 | 16 |
| ...wen2.5 32B Inst BaseMerge TIES | 128K / 65.8 GB | 11 | 4 |
| Franqwenstein 35B | 128K / 69.8 GB | 5 | 8 |
| ELYZA Thinking 1.0 Qwen 32B | 128K / 65.8 GB | 1845 | 7 |
| Hamanasu Magnum QwQ 32B | 128K / 65.8 GB | 295 | 9 |
| Archaeo 32B KTO | 128K / 65.8 GB | 14 | 4 |
| Qwen2.5 32B Gokgok Step3 | 128K / 65.7 GB | 6 | 0 |
| Qwen2.5 32B YOYO MIX | 128K / 65.7 GB | 5 | 2 |
| Qwen2.5 32B Dark Days Stage2 | 128K / 65.8 GB | 7 | 0 |
๐ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐