| Model Type |
| |||
| Training Details |
|
| LLM Name | Tinyllama PY CODER 4bit Lora 4k V9 |
| Repository ๐ค | https://huggingface.co/Ramikan-BR/tinyllama_PY-CODER-4bit-lora_4k-v9 |
| Base Model(s) | |
| Required VRAM | 0.4 GB |
| Updated | 2025-09-23 |
| Maintainer | Ramikan-BR |
| Model Files | |
| Supported Languages | en |
| GGUF Quantization | Yes |
| Quantization Type | gguf|4bit |
| Generates Code | Yes |
| Model Architecture | AutoModelForCausalLM |
| License | apache-2.0 |
| Model Max Length | 4096 |
| Is Biased | none |
| Tokenizer Class | LlamaTokenizer |
| Padding Token | <unk> |
| PEFT Type | LORA |
| LoRA Model | Yes |
| PEFT Target Modules | v_proj|k_proj|q_proj|down_proj|up_proj|gate_proj|o_proj |
| LoRA Alpha | 256 |
| LoRA Dropout | 0 |
| R Param | 128 |
Best Alternatives |
Context / RAM |
Downloads |
Likes |
|---|---|---|---|
| ...llama PY CODER 4bit Lora 4k V8 | 0K / 0.4 GB | 9 | 0 |
| Llama2 CodeGen PEFT QLoRA | 0K / 13.5 GB | 10 | 5 |
๐ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐