| Model Type |
| ||||||
| Training Details |
|
| LLM Name | Yi 1.5 9B Chat IMat GGUF |
| Repository ๐ค | https://huggingface.co/qwp4w3hyb/Yi-1.5-9B-Chat-iMat-GGUF |
| Base Model(s) | |
| Model Size | 9b |
| Required VRAM | 2 GB |
| Updated | 2025-09-23 |
| Maintainer | qwp4w3hyb |
| Model Type | llama |
| Model Files | |
| GGUF Quantization | Yes |
| Quantization Type | gguf|q4|q4_k|q5_k |
| Model Architecture | LlamaForCausalLM |
| License | apache-2.0 |
| Context Length | 4096 |
| Model Max Length | 4096 |
| Transformers Version | 4.40.0 |
| Tokenizer Class | LlamaTokenizer |
| Padding Token | <unk> |
| Vocabulary Size | 64000 |
| Torch Data Type | bfloat16 |
Best Alternatives |
Context / RAM |
Downloads |
Likes |
|---|---|---|---|
| HelpingAI2 9B | 128K / 17.8 GB | 128 | 23 |
| HelpingAI2 9B | 128K / 17.8 GB | 1890 | 25 |
| Llama 3 Experiment V1 9B GGUF | 8K / 5.4 GB | 17 | 0 |
| HelpingAI 9B | 4K / 17.6 GB | 80 | 25 |
| Yi 1.5 9B Chat GGUF | 4K / 3.4 GB | 1269 | 8 |
| Yi 1.5 9B Chat GGUF | 4K / 3.4 GB | 1037 | 2 |
| HelpingAI 9B | 4K / 17.6 GB | 101 | 26 |
| Yi 9B 200K 3.0bpw H6 EXL2 | 256K / 3.9 GB | 5 | 1 |
| Yi 9B 200K 6.0bpw H6 EXL2 | 256K / 7 GB | 5 | 1 |
| Faro Yi 9B DPO 8bpw EXL2 | 32K / 8.3 GB | 8 | 1 |
๐ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐