Meta Llama 3 8B Instruct GPTQ Int4 by study-hjt

 ยป  All LLMs  ยป  study-hjt  ยป  Meta Llama 3 8B Instruct GPTQ Int4   URL Share it on

  4-bit   Autotrain compatible   Conversational   En   Endpoints compatible   Facebook   Gptq   Instruct   Int4   Llama   Llama-3   Llama3   Meta   Pytorch   Quantized   Region:us   Safetensors

Meta Llama 3 8B Instruct GPTQ Int4 Benchmarks

nn.n% — How the model compares to the reference models: Anthropic Sonnet 3.5 ("so35"), GPT-4o ("gpt4o") or GPT-4 ("gpt4").
Meta Llama 3 8B Instruct GPTQ Int4 (study-hjt/Meta-Llama-3-8B-Instruct-GPTQ-Int4)
๐ŸŒŸ Advertise your project ๐Ÿš€

Meta Llama 3 8B Instruct GPTQ Int4 Parameters and Internals

Model Type 
text generation
Use Cases 
Areas:
Commercial, Research
Applications:
Assistant-like chat, Natural language generation
Primary Use Cases:
English language generation tasks
Limitations:
Use in languages other than English without proper fine-tuning, Use that violates applicable laws
Considerations:
Considerations for tailored safety testing for specific applications
Additional Notes 
Llama 3 supports only English language generation outright. Developers may fine-tune it to support additional languages.
Training Details 
Data Sources:
Publicly available online data
Data Volume:
15 trillion tokens
Methodology:
Supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF)
Context Length:
8000
Hardware Used:
Meta's Research SuperCluster, H100-80GB GPUs
Model Architecture:
Auto-regressive language model, optimized transformer architecture
Safety Evaluation 
Methodologies:
Red teaming, Adversarial evaluations
Findings:
Reduction of residual risks, Model refusal mitigation
Risk Categories:
CBRNE, Cybersecurity, Child Safety
Ethical Considerations:
Ethical guidelines for responsible AI deployment outlined
Responsible Ai Considerations 
Transparency:
An open approach to AI for better product safety and innovation
Mitigation Strategies:
Updated Responsible Use Guide, Meta Llama Guard 2, Code Shield
Input Output 
Input Format:
Text
Accepted Modalities:
Text
Output Format:
Text and code generation
LLM NameMeta Llama 3 8B Instruct GPTQ Int4
Repository ๐Ÿค—https://huggingface.co/study-hjt/Meta-Llama-3-8B-Instruct-GPTQ-Int4 
Base Model(s)  ...ma 3 8B Instruct OpenVINO INT4   rajatkrishna/Meta-Llama-3-8B-Instruct-OpenVINO-INT4
Model Size8b
Required VRAM5.7 GB
Updated2025-09-26
Maintainerstudy-hjt
Model Typellama
Instruction-BasedYes
Model Files  5.7 GB
Supported Languagesen
GPTQ QuantizationYes
Quantization Typegptq
Model ArchitectureLlamaForCausalLM
Licenseother
Context Length8192
Model Max Length8192
Transformers Version4.39.3
Tokenizer ClassPreTrainedTokenizerFast
Padding Token<|end_of_text|>
Vocabulary Size128256
Torch Data Typefloat16

Best Alternatives to Meta Llama 3 8B Instruct GPTQ Int4

Best Alternatives
Context / RAM
Downloads
Likes
...a 3 8B Instruct 262K 4bit GPTQ256K / 5.8 GB61
... 8B Instruct 262K 4bit GPTQ 02256K / 5.7 GB60
...lama 3.1 8B Instruct GPTQ INT4128K / 5.8 GB2230438
...Instruct 80K Qlora Merged GPTQ80K / 5.8 GB60
...oLeo Instruct 8B 32K V0.1 GPTQ64K / 5.7 GB60
Meta Llama 3 8B Instruct GPTQ8K / 5.7 GB66455
Meta Llama 3 8B Instruct GPTQ8K / 5.7 GB33816
Meta Llama 3 8B Instruct GPTQ8K / 5.8 GB60
...ta Llama 3 8B Instruct GPTQ 8B8K / 9.2 GB70
Meta Llama 3 8B Instruct GPTQ8K / 5.8 GB51
Note: green Score (e.g. "73.2") means that the model is better than study-hjt/Meta-Llama-3-8B-Instruct-GPTQ-Int4.

Rank the Meta Llama 3 8B Instruct GPTQ Int4 Capabilities

๐Ÿ†˜ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐ŸŒŸ

Instruction Following and Task Automation  
Factuality and Completeness of Knowledge  
Censorship and Alignment  
Data Analysis and Insight Generation  
Text Generation  
Text Summarization and Feature Extraction  
Code Generation  
Multi-Language Support and Translation  

What open-source LLMs or SLMs are you in search of? 51539 in total.

Our Social Media →  
Original data from HuggingFace, OpenCompass and various public git repos.
Release v20241124