| Model Type | | code, instruct, self instruct |
|
| Use Cases |
| Areas: | | code instruction, code generation |
|
|
| Additional Notes | | Issues with device="auto" in model arguments, requires trust_remote_code=True. |
|
| Supported Languages | | Markdown (proficient), Java (proficient), JavaScript (proficient), Python (proficient), TypeScript (proficient), PHP (proficient), SQL (proficient), JSX (proficient), reStructuredText (proficient), Rust (proficient), C (proficient), CSS (proficient), Go (proficient), C++ (proficient), HTML (proficient), Vue (proficient), Ruby (proficient), Jupyter Notebook (proficient), R (proficient), Shell (proficient) |
|
| Training Details |
| Data Sources: | | bigcode/the-stack-dedup, sahil2801/CodeAlpaca-20k, teknium/GPTeacher-CodeInstruct |
|
| Data Volume: | | ~25,000 code instruction/response pairs |
|
| Methodology: | | fine-tuning using CodeAlpaca & GPTeacher datasets to add instruct capabilities |
|
| Training Time: | |
| Hardware Used: | |
|
| Input Output |
| Input Format: | | "### Instruction: ### Input: ### Response:" or "### Instruction: ### Response:" |
|
| Output Format: | |
| Performance Tips: | | Sampler settings: max_new_tokens=128, do_sample=True, use_cache=True, temperature=0.2, top_p=0.9, eos_token_id=self.tokenizer.eos_token_id. Tokenizer decode arguments: skip_special_tokens=True, clean_up_tokenization_space=False |
|
|