Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal by zaq-hack

 ยป  All LLMs  ยป  zaq-hack  ยป  Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal   URL Share it on

  Autotrain compatible   Conversational   Endpoints compatible   Exl2   Instruct   Mixtral   Moe   Quantized   Region:us   Safetensors   Sharded   Tensorflow

Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal Benchmarks

nn.n% — How the model compares to the reference models: Anthropic Sonnet 3.5 ("so35"), GPT-4o ("gpt4o") or GPT-4 ("gpt4").
Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal (zaq-hack/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss-bpw350-h6-exl2-rpcal)
๐ŸŒŸ Advertise your project ๐Ÿš€

Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal Parameters and Internals

Model Type 
RP, ERP
Use Cases 
Areas:
Research, Commercial Applications
Applications:
Role Playing, Dialog Generation
Additional Notes 
This model is experimental and uses the Chatml prompting format.
Training Details 
Data Sources:
Aesir 1, 2 & 3, LimaRP-20231109, ToxicQAFinal, No-robots-ShareGPT
Model Architecture:
Trained on the Zloss fork of Charles
Input Output 
Input Format:
Chatml prompt format
LLM NameNoromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal
Repository ๐Ÿค—https://huggingface.co/zaq-hack/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss-bpw350-h6-exl2-rpcal 
Required VRAM20.7 GB
Updated2025-09-17
Maintainerzaq-hack
Model Typemixtral
Instruction-BasedYes
Model Files  8.6 GB: 1-of-3   8.6 GB: 2-of-3   3.5 GB: 3-of-3
Quantization Typeexl2
Model ArchitectureMixtralForCausalLM
Licensecc-by-nc-4.0
Context Length32768
Model Max Length32768
Transformers Version4.37.0.dev0
Tokenizer ClassLlamaTokenizer
Vocabulary Size32000
Torch Data Typebfloat16

Best Alternatives to Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal

Best Alternatives
Context / RAM
Downloads
Likes
...M 2 8x22B Beige 2.4bpw H6 EXL264K / 42.7 GB60
...M 2 8x22B Beige 3.0bpw H6 EXL264K / 53.2 GB60
...M 2 8x22B Beige 4.0bpw H6 EXL264K / 70.8 GB50
...M 2 8x22B Beige 5.0bpw H6 EXL264K / 88.5 GB50
...B Instruct V0.1 8.0bpw H8 EXL264K / 120.2 GB101
...8x22b Instruct Oh EXL2 2.25bpw64K / 40.1 GB31
...eryTour V2 8x7B 4.5bpw H6 EXL232K / 26.5 GB72
...it MoE 2bitgs8 Metaoffload HQQ32K / 24.1 GB3519
... 4bit MoE 3bit Metaoffload HQQ32K / 22.4 GB3113
...hin 2.7 Mixtral 8x7b 8bpw EXL232K / 46.8 GB62
Note: green Score (e.g. "73.2") means that the model is better than zaq-hack/Noromaid-v0.4-Mixtral-Instruct-8x7b-Zloss-bpw350-h6-exl2-rpcal.

Rank the Noromaid V0.4 Mixtral Instruct 8x7b Zloss Bpw350 H6 EXL2 Rpcal Capabilities

๐Ÿ†˜ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐ŸŒŸ

Instruction Following and Task Automation  
Factuality and Completeness of Knowledge  
Censorship and Alignment  
Data Analysis and Insight Generation  
Text Generation  
Text Summarization and Feature Extraction  
Code Generation  
Multi-Language Support and Translation  

What open-source LLMs or SLMs are you in search of? 51415 in total.

Our Social Media →  
Original data from HuggingFace, OpenCompass and various public git repos.
Release v20241124