| Model Type | |
| Use Cases |
| Areas: | | Research, Chatbot development |
|
| Applications: | | Multilingual chat applications |
|
| Primary Use Cases: | | Multilingual text generation, Conversational agents |
|
| Limitations: | | Cannot be used in critical or high-risk situations, May produce undesirable outputs |
|
| Considerations: | | Users should avoid using this model in scenarios where errors could lead to significant harm. |
|
|
| Additional Notes | | Prompt format is defined in tokenizer_config.json. Can be used to deploy OpenAI-like API service using vllm. |
|
| Supported Languages | | zh (Full proficiency), en (Full proficiency), fr (Full proficiency), de (Full proficiency), ja (Full proficiency), ko (Full proficiency), it (Full proficiency), ru (Full proficiency), fi (Full proficiency) |
|
| Input Output |
| Input Format: | | Prompt format using special tokens like <|role|>, <|says|>, <|end|> |
|
| Accepted Modalities: | |
| Output Format: | |
| Performance Tips: | | Ensure usage of the fast tokenizer from transformers. |
|
|