Phi 3 Mini 128K Instruct by microsoft

 ยป  All LLMs  ยป  microsoft  ยป  Phi 3 Mini 128K Instruct   URL Share it on

  Autotrain compatible   Code   Conversational   Custom code   En   Endpoints compatible   Instruct   Phi3   Region:us   Safetensors   Sharded   Tensorflow

Phi 3 Mini 128K Instruct Benchmarks

Phi 3 Mini 128K Instruct (microsoft/Phi-3-mini-128k-instruct)
๐ŸŒŸ Advertise your project ๐Ÿš€

Phi 3 Mini 128K Instruct Parameters and Internals

Model Type 
text generation
Use Cases 
Areas:
Research, Commercial applications
Primary Use Cases:
Memory/compute constrained environments, Latency bound scenarios, Strong reasoning tasks
Limitations:
Not specifically designed or evaluated for all downstream purposes.
Considerations:
Adherence to laws and regulations is required.
Additional Notes 
This is a static model trained on an offline dataset with a cutoff date of October 2023. Future versions may improve upon it.
Supported Languages 
English (Proficient)
Training Details 
Data Sources:
Publicly available documents, Newly created synthetic data, High quality chat format supervised data
Data Volume:
4.9T tokens
Methodology:
Supervised fine-tuning, Direct Preference Optimization
Context Length:
128000
Training Time:
10 days
Hardware Used:
512 H100-80G GPUs
Model Architecture:
Dense decoder-only Transformer
Responsible Ai Considerations 
Fairness:
Models can over- or under-represent groups, erase representation of some groups, or reinforce stereotypes.
Transparency:
Inappropriate or offensive content generation potential.
Accountability:
Developers need to ensure the model complies with laws and regulations.
Mitigation Strategies:
Use safety classifiers or implement custom safety solutions.
Input Output 
Input Format:
Text in chat format
Accepted Modalities:
Text
Output Format:
Generated text in response to input
Performance Tips:
For certain GPUs, call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager".
Release Notes 
Version:
June 2024
Notes:
Improvement in long-context understanding, instruction following, reasoning capability.
LLM NamePhi 3 Mini 128K Instruct
Repository ๐Ÿค—https://huggingface.co/microsoft/Phi-3-mini-128k-instruct 
Model Size3.8b
Required VRAM7.7 GB
Updated2025-07-24
Maintainermicrosoft
Model Typephi3
Instruction-BasedYes
Model Files  5.0 GB: 1-of-2   2.7 GB: 2-of-2
Supported Languagesen
Model ArchitecturePhi3ForCausalLM
Licensemit
Context Length131072
Model Max Length131072
Transformers Version4.40.2
Tokenizer ClassLlamaTokenizer
Padding Token<|endoftext|>
Vocabulary Size32064
Torch Data Typebfloat16

Quantized Models of the Phi 3 Mini 128K Instruct

Model
Likes
Downloads
VRAM
Phi 3 Mini 128K Instruct GGUF211971 GB
Phi 3 Mini 128K Instruct GGUF110781 GB
Phi 3 Mini 128K Instruct Gguf113461 GB
...128K Instruct HQQ 2bit Smashed071 GB
... 3 Mini 128K Instruct Bnb 4bit1352 GB

Best Alternatives to Phi 3 Mini 128K Instruct

Best Alternatives
Context / RAM
Downloads
Likes
Phi 4 Mini Instruct128K / 7.7 GB248882556
Phi 3.5 Mini Instruct128K / 7.7 GB159356892
MediPhi Instruct128K / 7.7 GB79627
NuExtract V1.5128K / 7.7 GB10851189
Phi 4 Mini Instruct128K / 7.7 GB372918
Phi 3.5 Mini TitanFusion 0.1128K / 7.7 GB90
MediPhi Clinical128K / 7.7 GB2294
NuExtract 1.5128K / 7.7 GB4865236
ECE EIFFEL 3Bv2128K / 7.7 GB50
MediPhi MedCode128K / 7.7 GB923
Note: green Score (e.g. "73.2") means that the model is better than microsoft/Phi-3-mini-128k-instruct.

Rank the Phi 3 Mini 128K Instruct Capabilities

๐Ÿ†˜ Have you tried this model? Rate its performance. This feedback would greatly assist ML community in identifying the most suitable model for their needs. Your contribution really does make a difference! ๐ŸŒŸ

Instruction Following and Task Automation  
Factuality and Completeness of Knowledge  
Censorship and Alignment  
Data Analysis and Insight Generation  
Text Generation  
Text Summarization and Feature Extraction  
Code Generation  
Multi-Language Support and Translation  

What open-source LLMs or SLMs are you in search of? 50035 in total.

Our Social Media →  
Original data from HuggingFace, OpenCompass and various public git repos.
Release v20241124